Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Korean Journal of Urology ; : 282-287, 2009.
Article in Korean | WPRIM | ID: wpr-218430

ABSTRACT

PURPOSE: We studied the feasibility and results of a tissue-engineered ileal conduit using a poly (epsilon-caprolactone) (PCL) nano-sheet seeded with muscle-derived stem cells to replace a conventional ileal conduit in rats. MATERIALS AND METHODS: Muscle-derived stem cells were isolated from the gastrocnemius muscle of female Sprague-Dawley rats (200-250 g, n=6) by use of a preplate technique and were cultured on a PCL nano-sheet. The PCL nano-sheet was implanted into the omentum of rats and was then made into a conical shaped conduit. Rats were sacrificed 4 and 8 weeks after implantation, and morphologic changes were assessed by H&E and immunofluorescence staining, including DAPI staining and staining for myogenin and myosin heavy chain (MyHC). RESULTS: All rats survived until the end of the experiment. A minimal inflammatory reaction was observed around the PCL nano-sheet in the 4 week specimens but was found to be reduced in the 8 week specimen. Muscle bundles were identified at week 4 as well as week 8 after implantation on H&E staining. Around the PCL sheet, immunostaining for both myogenin and MyHC were positive, indicating skeletal muscle differentiation and ingrowth into the PCL sheet. CONCLUSIONS: A PCL nano-sheet seeded with muscle-derived stem cells showed successful skeletal muscle differentiation at 4 and 8 weeks after implantation. This preliminary result supports the feasibility of a tissue-engineered ileal conduit using a PCL nano-sheet (seeded with muscle-derived stem cells) in place of conventional ileal conduits.


Subject(s)
Animals , Female , Humans , Rats , Fluorescent Antibody Technique , Hypogonadism , Indoles , Mitochondrial Diseases , Muscle, Skeletal , Muscles , Myogenin , Myosin Heavy Chains , Omentum , Ophthalmoplegia , Rats, Sprague-Dawley , Seeds , Stem Cells , Tissue Engineering , Urinary Diversion
SELECTION OF CITATIONS
SEARCH DETAIL